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In a recent paper t it has been proposed that the total work involved 
in the circulation of blood in a section of artery (sufficiently small so 
that the pulsating changes in the kinetic energy of the blood stream 
in it can be neglected as compared to the work required to overcome 
friction) can be expressed by  the equation: 

f~. l .8~ 
E = pf  + bvol + blrrr 2 (1) 
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which embodies Poiseuille's law of flow and a term which covers the 
cost of maintenance of blood volume, p is the fall in pressure in 
dynes/cm. ~, b is the cost of blood volume in ergs/cc, sec. (considered 
constant), vol is the volume, r is the radius of the section of artery, 
and 71 is the viscosity of whole blood (also taken as "constant"). 
At constant flow, f (that is, for any given steady state), and at 
constant length of arterial section, l, the total energy, E, is a mini- 
mum when: 

r6r~b 
f~ = ~ (2) 
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Substituting forj  ~ in the original equation, we obtain: 

Ell = r2(3rb) (3) 

Or, to avoid constants, we may use a different unit for E, and write: 

(kZ)/t = r~ (4) 

Murray, C. D., Proc. Nat. Acad. Sc., 1926, xii, 207. 
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This equation is a simple deduction from premises discussed at length 
in the paper referred to)  This equation can be used to develop a 
theoretical law for the angle of branching of arteries, on the assumption 
that the total work of the circulation is to be a minimum, that is, 
assuming the validity of equation (4). Let us consider the plan of 
arterial branching which is most effident in allowing for the distri- 
bution of blood from a point S to two points, A and B (see Fig. 1). 
r0, rl, r2 are the radii of the arteries; 10, 11,/2, the lengths, and x and y 
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FIG. 1. 

are the angles, to be determined, which the branches make with the 
line of direction of the main artery proceeding from S. Suppose 
Diagram 1 to represent the condition for minimum work, and then 
imagine an infinitesimal increment, dlo, to be added to l0 (l~ and l~ 
now assuming the positions indicated by the dashed lines). The 
"cost" (in the tentative unit of kE) of the section l0 is now increased by 
th~ increment dlor~, and the costs of the branches are decreased (in 
this case) by cos x dIor~ and cos y dlor~ respectively. The dotted lines 
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show the triangles constructed in order to arrive at this result. Two 
similar constructions (one of them illustrated by Diagram 2, Fig. 1) 
can be made, representing virtual increments added in turn to lz and 12. 
By the principle of virtual work in mechanics (which states that, when 
conditions are such that the total work is a minimum, then a virtual 
change in the configuration of the system results in no change in the 
total work) we obtain one equation for each of the three constructions, 
as follows: (Only two of these equations are independent, since cos 
( x + y )  is a function of cos x and cos y, but the procedure is simplified 
by taking the three cases.) 

dlor~o = cos  x dlor~ + cos  y dlor~ 
d~lr~ = -cos (x+y) dl~r~ + cos x dl~r~ 
d/2r~ = - - c o s ( x + y )  dl~r~ + cos  y dl~r~ 

These equations can be divided through by dlo, dll, and dl2 respectively, 
and by combining we arrive at the equations: 

d + ,~ - d ,'o + r :  - ,1' , '  - ,~ - ,2' 
c o s x  = .; c o s y =  , c o s ( x + ~ ) =  

F0 ' 2  2 

Since the flow in the branches must equal the flow in the main stem, 
and since, from equation (2), at maximum efficiencyf = k'r 3, then it 
follows that fo =.[z + A = k'rg = k'(r~ + r~). Thus rg = rZ~ + r2 3. 
Substituting this last relation in the equations for the angles we obtain 
the final result: 

COS X = 2 2 2 ~ COS : y =  o r ,  
rO '1 2 r~ ,~ ' 

cos (x + y) = (5, 6, 7) 

two of the three equations being sufficient to determine the plan. 
If, instead of dividing into two branches, an artery, after giving 

off two equal branches on opposite sides, continues in its course, the 
ideal angle made by either branch with the main artery can be deter- 
mined according to the following equations (see Diagram 3, Fig. 1): 

dtorSo = dlo, ~ + 2 cos  x dlor [ 

rS o --  r~ ,g - -  (rs o -  2 ~ ) s  
c o s x  = 2 r [  2 , ~  (8)  
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A few scale drawings are presented illustrating the application of 
the above equations. The equations yield results conforming to 
certain qualitative laws observed by Roux and quoted in a paper 
by Hess :~ for example the rule that the larger the branch the more the 

j rgt ~ 0.5 ] 

FIG. 2. Scale drawings of arterial branching. 
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The drawings are based on the 
equations developed in the text, and illustrate the conditions, for free unob- 
structed branching of vessels, which make the work of distribution of blood a 
minimum. Values for the radiiof the vessels and for certain angles are shown in the 
drawing. The sum of the cubes of the radii of the branches equals the cube of the 
radius of the main stem from which they arise. The confluence of veins appears 
to follow the same rules in a general way. 

I t  is interesting to compare these branchings with branching in trees. (The 
drawing should be turned upside down for this comparison.) For blood vessels the 
minimum theoretical angle for a simple bifurcation is 75 °, but in trees the actual 
angle is usually less than this, especially when the bifurcation occurs in a vertical 
plane and nmy therefore be supposed to be affected by both hello- and geotropic 
factors. Another interesting comparison is afforded by results obtained by Miss 
E. Hendee and Miss M. E. Gardiner in this laboratory. If a tree is cut through 
at any point of the trunk, of a branch, or of a small twig, the ratio of the weight 
of the whole part (peripheral to the cut section) to the cube of the radius of the cut 
section (taking the average ratio observed for each set of branches of similar 
weight) is a constant. Thus the rule for arteries, r~ = r~ + r~ + . . . .  , tends to 
hold also in small trees. 

o Hess, W. R., Arch. Entwcklngsmechn. Organ., 1903, xvi, 632. 
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Fro. 3. Curve I shows the relation between the angle ( x + y )  and the ratio 
r l / r ~ - - t h e  case illustrated by Diagram 1. The curve passes through a minimum 
when rl = r~. See Table I. Note the small variation in the angle of bifurcation, 
whatever the value of the ratio. 

Curve I I  shows the relation between angle x and the ratio r l / ro  (Table II,  
Diagram 1). Note that the larger the branch the less is the angle made with the 
line of direction of the main stem. 

Curve I I I  shows the relation between angle x and the ratio r l / ro  (Table III ,  
Diagram 3). This is the only case considered where the direction of the main 
artery is unchanged. At the point when the ratio equals 0.7937, this case merges 
into the one illustrated by Curve II, the continuation of the main stem having 
been reduced to zero. 

TABLE I .  TABLE I I .  TABLE III. 

See Diagram 1. See Diagram 1. See Diagram 3. 

n/r2 L (x + y) 

1 74 ° . 95 
2or 1/2 77°.6 
3 " 1/3 80 °. 3 

5 "  1/5 83°.5 
10 " 1/10 86 °. 5 

(oo " 0.0) 90°.0 

n/ro or r2/ro L x or/- y 

(0.00) 90°.0 
0.20 81°.2 
0.40 69 ° . 9 

0.60 55°.6 
O. 80 36 °. 7 
0.90 23°.9 

0.95 15°.5 
(1.00) 0%0 

riZro L x  

(0.00) 90°.0 
0.20 82°.3 
0.40 74°. 2 

O. 60 64 °. 1 
0.70 56°.7 
O. 76 49°. 2 

(0.7937) 370.5 
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main artery is deflected, and the smaller is the angle between the 
branch and the direction of the main stem before division; and the rule 
that branches of equal size make equal angles with the same main 
stem. Anatomically the angles are the variables which can be checked 
most readily, and it is not necessary here to consider the lengths, 
which are, in each case, easily determined, if the points have been 
given and the angles calculated. 

An equation for the "ideal" angle for a single branching has been 
published by Hess, who took as his criterion of efficiency the condition 
which would make the fall in pressure, between a point in the main 
artery and a point in the branch, a minimum. He neglected to take 
into account the conditions in the continuing portion of the main 
artery, assuming implicitly also that the continuation was in a straight 
line. Owing to this error Feldman 3 has been somehow misled. He 
arrives at the result 4 that, as the ratio of the radius of a branch to the 
radius of the artery approaches unity, the angle of bifurcation should 
approach zero. He then cites as an instance the small angle between 
the external and internal carotid arteries. In contrast to this curious 
result, the rule arrived at in the present paper is that the angle in the 
bifurcation of an artery should not be less than 75 ° (74°.9 to be more 
exact). Miss M. Hardy and Miss M. S. Gardiner, in this laboratory, 
have prepared a corrosion model of the arterial and venous systems 
of a cat's lung,--an excellent organ in which to observe free branching 
of vessels. Examination of this preparation makes it apparent that 
for every bifurcation angle less than let us say 70 ° there are hundreds, 
if not thousands, of cases where the angle is between 75 ° and 90 °, a 
fact consistent with the limits for the angle (x+y) as given by  equation 
(7). These limits are perhaps the most characteristic results of our 
analysis. There occur, of course, numerous and important branchings 
which do not agree exactly with the simple theory, e.g. the bifurcation 
of the pulmonary artery makes too wide an angle, and the common 
iliac arteries make an angle varying from 600-75 ° (Piersol) and there- 
fore preponderantly on the narrow side of the theoretical angle. It  
would be interesting, in the case of the carotids, to analyze factors of 

3 Feldman, W. M., Biomathernatics, London, 1923. 
Feldman, 3 p. 172. 
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differential growth which make this case, and presumably others, 
singularly exceptional. One more point: in analyzing the minimum 
properties of physiological systems it seems preferable, when possible, 
to construct the problem in such terms that the work involved in the 
system becomes a central feature. 


